
会员
大数据计算系统原理、技术与应用
更新时间:2024-05-17 17:35:56 最新章节:封底
书籍简介
本书兼顾广度和深度、应用和原理、研发和运维,对于各类大数据计算系统进行了深入的介绍,包括大数据计算系统的基本概念、各种大数据计算系统的配置与程序设计方法、大数据计算系统的运行原理、大数据计算机系统的监控、运维和调优方法等。本书适用于作为数据科学与大数据、计算机等专业本科生和研究生相关课程的教材,还可供大数据领域从业人员参考。
品牌:机械工业出版社
上架时间:2023-10-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
王宏志 刘海龙等编著
最新上架
- 会员本书瞄准当前高校MySQL数据库教学与实验的需求,在MySQL8.0的基础上编写而成。全书分为两篇。第一篇为MySQL数据库基础,内容包含:数据库基础、MySQL语言、数据定义、数据操纵、数据查询、视图和索引、MySQL编程技术、MySQL安全管理、备份和恢复、事务管理、PHP和MySQL教学管理系统开发。第二篇为MySQL实验,所编排的各个实验与第一篇中的各章(除第10、11章外)内容相对应,计算机12万字
- 会员本书以Python作为开发语言,系统介绍PySpark开发环境搭建流程及基于PySpark进行大数据分析的相关知识。本书条理清晰、重点突出,理论叙述循序渐进、由浅入深。本书共7章,第1?5章包括PySpark大数据分析概述、PySpark安装配置、基于PySpark的DataFrame操作、基于PySpark的流式数据处理、基于PySpark的机器学习库,内容介绍注重理论与实践相结合,通过典型示例计算机10.4万字
- 会员本书以案例的形式,介绍从思维模型分析到场景实践的数据分析方法。全书围绕“数据分析”与“运营增长”两大关键要素,在系统介绍数据分析思维、数据分析方法、数据采集技能、数据清洗技能等基础知识的同时,以问题为导向,解读运营与增长的关键性业务内容,在获客、激活、留存、变现、自传播循环等各个核心运营环节展开数据分析实战。本书提供案例相关数据集与源码包,适合数据分析、产品运营、市场营销等行业有数据分析具体业务需计算机12万字
- 会员本书以Python数据分析与挖掘的常用技术与真实案例相结合的方式,深入浅出地介绍Python数据分析与挖掘的重要内容。本书共11章,分为基础篇(第1~5章)和实战篇(第6~11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识;实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预计算机13.6万字
- 会员《数据分析实践:专业知识和职场技巧》从初学者的角度出发,讲解了进阶为高级数据分析师所需的知识和技能,其中既包括数据分析岗位的介绍、发展现状及未来趋势,也包括实际工作中各环节的方法策略、实战案例,还包括职场中的困惑解答及面试指导。阅读本书,并基于本书进一步拓展所需要的知识能,可以帮助读者形成一套成系统、可实战的数据分析方法论。计算机19.6万字
- 会员MySQL数据库是目前全球流行的数据库之一。《MySQL8.0从入门到实战》从入门到实战,系统全面、由浅入深地介绍MySQL数据库应用的各个方面。全书分为8个部分,共18章。第1部分(第1~3章)介绍MySQL的基础知识,包括初识MySQL、数据库设计和数据类型;第2部分(第4~6章)介绍MySQL的基本操作,包括SQL基础操作、MySQL连接查询和数据复制、MySQL基础函数;第3部分(第7、8计算机9.7万字
- 会员本书围绕数据挖掘竞赛,讲解了各种类型数据挖掘竞赛的解题思路、方法和技巧,并辅以对应的实战案例。全书共11章。第1章介绍数据挖掘竞赛的背景、意义和现状。从第2章开始,介绍了各种不同类型的数据挖掘竞赛包括结构化数据、自然语言处理、计算机视觉(图像)、计算机视觉(视频)、强化学习。每种类型的数据挖掘竞赛包含理论篇和实战篇:理论篇介绍通用的解题流程和关键技术;实战篇选取比较有代表性的赛题,对赛题的优秀方案计算机6.7万字
- 会员高质量的数据关乎企业运营、合规、决策和业绩的关键,哈佛商业评论的一项研究发现,企业中只有3%的数据符合质量标准,绝大多数公司都在寻求切实可行的指导来提高数据质量。本书作者基于多年在数据、数据分析和人工智能方面的实践经验,阐述了4步构建高质量数据体系。他提出了高质量数据的四阶段DARS方法(定义、评估、实现、持续)和10个数据质量最佳实践案例,以此来提高业务中的数据质量水平,为业务提供数据价值,保证计算机11.7万字