
会员
玩转机器人:DIY智能小车机器人
更新时间:2024-10-16 18:06:37 最新章节:参考文献
书籍简介
本书主要介绍使用UG软件、Proteus软件、AltiumDesigner软件进行智能小车机器人设计的方法。本书内容涉及UG软件的模型绘制、模型装配和运动仿真,Proteus软件的电路设计和电路仿真,AltiumDesigner软件的元件库绘制、原理图绘制和PCB绘制。本书从机械结构、电路设计、PCB设计三部分对智能小车机器人进行详细讲解,完整介绍了动力模块零部件绘制、车体模块零部件绘制、零部件装配与运动仿真、基础电路仿真、基于51单片机的智能小车机器人仿真、基于Arduino单片机的智能小车机器人仿真、元件库绘制和PCB设计。通过学习本书,读者可以在熟悉UG软件、Proteus软件、AltiumDesigner软件操作的同时体会智能小车机器人的设计思路,为自己设计智能小车机器人打下基础。
上架时间:2024-09-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
刘波等编著
同类热门书
最新上架
- 会员本书将带你深入探索AI“神器”——DeepSeek的无限潜能,带你从零开始,轻松掌握AI的核心应用。通过学习本书,你将轻松上手DeepSeek,开启智能生活新篇章;通过学习本书,你将学会用DeepSeek大幅提升工作效率;通过学习本书,你将学会如何让DeepSeek成为你的职场超级助手;通过学习本书,你将学会如何利用DeepSeek激发自己的创作灵感,打造爆款内容和个人品牌;通过学习本书,你将学会计算机7.2万字
- 会员本书通过实践案例操作,讲述AI绘画的生成步骤,展现了AI绘画的魔法魅力。从历史到未来,跨越百年时空;从理论到实践,讲述案例操作;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。AI绘画的诞生,引发了奇点降临,点亮了AGI(通用人工智能),并涉及Prompt、风格、技术细节、多模态交互、AIGC等一系列讲解。计算机5.5万字
- 会员本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle计算机0字
- 会员本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字
- 会员本书通过13章的探讨,带领读者踏上项目管理卓越之路。第1章“人工智能颠覆与重塑项目管理”,首先揭示了人工智能对项目管理的深刻影响和带来的机遇与挑战。紧接着,第2章至第13章依次介绍了使用ChatGPT编写各种文档、在项目启动中的应用、帮助组建高效团队、辅助项目沟通管理、项目计划与管理、项目成本管理、项目时间管理、项目质量管理、项目风险管理、辅助采购计划与采购流程、辅助项目绩效管理以及进行项目总结等计算机16.6万字
- 会员本书是一本面向产品经理的实用新书,分12章探讨如何用ChatGPT提升产品管理工作的效率和质量。第1章介绍了人工智能对产品管理的影响;第2章介绍用ChatGPT提高文档写作效率;第3章介绍用ChatGPT进行竞品和市场分析;第4章介绍用ChatGPT优化需求管理;第5章介绍用ChatGPT分析产品数据;第6章介绍用ChatGPT改进用户体验;第7章介绍用ChatGPT设计产品原型;第8章介绍用Ch计算机11.5万字
- 会员本书全面、系统地探讨科学计算的背景、机器学习的重要性以及昇思MindSpore框架在科学计算中的广泛应用。科学计算作为一门交叉学科,融合了数学、计算机科学与技术等领域的专业知识,在现代科学研究和工程实践中起着关键作用。本书以MindSpore为平台,深入研究这一全场景AI框架在科学计算中的探索与实践,通过对基础理论、行业应用和实际案例的详细介绍,为读者提供全方位的学习和参考资料。全书共8章,首先详计算机15.7万字
- 会员本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字